في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:
Na Lógica e Matemática, a Lógica bicondicional (também conhecida como bicondicional material) é o Conectivo lógico de duas proposições afirmando "p se e somente se q", onde q é uma Hipótese (ou antecedente) e p é um conclusão (ou consequente). Isso é frequentemente abreviado p sse q. O operador é denotado usando uma seta de dupla implicação (↔), a prefixed E (Epq), um sinal de igualdade (=),um sinal de equivalência (≡), ou EQV. Isso é logicamente equivalente a (p → q) ∧ (q → p), ou o XNOR (nor exclusivo) operador da Álgebra_booleana.Isto é equivalente a "(não p ou q) e (não q ou p)". Também é logicamente equivalente a "(p e q) ou (não p e não q)",significando "os dois ou nenhum". A única diferença paraCondicional_material é o caso no qual a hipótese é falsa mas a conclusão é verdadeira. Neste caso, na condicional, o resultado é verdadeiro, contudo, na bicondicional o resultado é falso. Na interpretação conceitual, a = b significa "Todos os a 's são b 's e todos os b 's são a 's"; Em outras palavras, os conjuntos a e b coincidem: eles são idênticos. Isso não significa que todos os conceitos têm o mesmo significado. Exemplos: "triângulo" e "trilateral", "triângulo equiangular" e "triângulo equilátero". O antecedente é o "sujeito" e o consequente é o e predicado de uma afirmativa/ Proposição universal.
Na interpretação proposicional, a ⇔ b significa que a implica b e b implica a; em outras palavras, que as proposições são equivalentes, o que é dizer, ambas são verdadeiras ou falsas ao mesmo tempo. Isso não significa que elas tem o mesmo significado. Exemplo: "O triângulo ABC tem dois lados iguais", e "O triângulo ABC tem 2 ângulos iguais". O antecedente é a premissa ou a causa e o consequente é a consequência. Quando uma implicação é traduzida por um julgamento hipotético (ou condicional) O antecedente é chamado de "hipótese (ou de condição) e o consequente é chamado de tese.
Uma forma comum de se demonstrar um bicondicional é usar sua equivalência para a conjunção de duas condicionais ,em que há uma troca entre a hipótese e a conclusão, as demonstrando separadamente.
Quando ambos os membros da bicondicional são proposições, ela pode ser dividida em duas condicionais, na qual uma é chamada de teoremae a outra é sua recíproca.[carece de fontes?]Assim, sempre que um teorema e sua recíproca são verdadeiros, temos um bicondicional. Um simples teorema dá origem a uma implicação cujo antecedente é a hipótese e cujo consequente é a tese do teorema. condição suficiente da tese, e a tese a condição necessária da hipótese; isto é, é suficiente que a hipótese seja verdadeira para a tese de ser verdadeira também; embora seja necessário que a tese seja verdadeira para a hipótese de ser verdade também. Quando um teorema e sua recíproca são verdadeiros, dizemos que a sua hipótese é a condição necessária e suficiente da tese, ou seja, que é ao mesmo tempo, tanto a causa como consequência. Muitas vezes é dito que a hipótese é a condição suficiente da tese, e a tese a condição necessária da hipótese; isto é, é suficiente que a hipótese seja verdadeira para a tese de ser verdadeira também; embora seja necessário que a tese seja verdadeira para a hipótese de ser verdade também. Quando um teorema e sua recíproca são verdadeiros, dizemos que a sua hipótese é a condição necessária e suficiente da tese, ou seja, que é ao mesmo tempo, tanto a causa como consequência.